HighwayToCode
@HighwayToCode
While Учусь do Туплю

Путь data science. Как будет правильнее?

Добрый день!

Коротко о моем бекграунде:
Есть опыт написания фронта, опыт it рекрутера.
Учился в техническом вузе по инженерной специальности, но спустя год осознал, что сама эта специальность не для меня.

Объективная оценка недостатков:
Математику знаю и понимаю хорошо, НО замечал за собой иногда невнимательность при вычислениях. Т.е. основная проблема - сезонная невнимательность.

В данный момент пообщавшись с рядом Data Science специалистов заинтересовался направлением. Хочу попробовать развиваться в нем. Из чего у меня возникли вопросы:

1)Не помешает ли отсутствие профильного образования?
2)Не помешает ли особенности моего импульсивного порой мышления?
3)А с чего, собственно, начать? Есть ли какие-то рекомендации по книгам/курсам. Английский на неплохом уровне, но тяжко будет воспринимать англо-техническую речь.

Заранее большое спасибо за ответы!
  • Вопрос задан
  • 2698 просмотров
Решения вопроса 1
@dmshar
1."опыт написания фронта, опыт it рекрутера." - накакого отношения в Data Science. От слова "совсем".
2. "Учился в техническом вузе по инженерной специальности, но спустя год осознал, что сама эта специальность не для меня." - т.е. недоучился? Кстати, если нет склонности к инженерным специальностям, откуда уверенность, что есть склонность к "Data Science"? Замечу, "хотелось бы стать" и "имею склонность к" - это очень разные вещи.
3. "Математику знаю и понимаю хорошо" - откуда эта уверенность? Из школы? Или из универа в котором недоучились? Какие курсы математики все-таки "дослушали", какие успехи?
4. "невнимательность при вычислениях." - Вообще-то говоря, DS - это не вычисления. Вернее, вычисление сегодня выполняют хорошо известные реализации методов в разных пакетах. DS - это прежде всего умение разобраться в методах, понять их суть, ограничения, особенности и пр. , умение отобразить данные предметной области на абстрактные математические методы а потом проинтерпретировать полученные результаты в терминах предметной области.
5. "Хочу попробовать развиваться в нем. " - хочется - развивайся. В чем проблема? Получить благословение сообщества? Зачем? Если человеку что-то действительно чего-то хочется, то он берет и делает это. Иначе это выглядит как поиск оправдания того, почему "мне хочется, но я этим заниматься не буду".
6. "Не помешает ли отсутствие профильного образования?" - помешает. Ну и ? Если хочется развиваться в этом направлении, то "профильное образование" все равно придется получать. Любым способом - в универе, на курсах, самостоятельно. Но получать придется. А как без него? Не обижайтесь, но DS - это не рекрутинг. Это гораздо серьезнее.
7. "Не помешает ли особенности моего импульсивного порой мышления?" - Знаю спецов в DS с очень разным типом мышления. Еще раз вынужден повторить - не ищите отмазки "почему не надо этого делать".
8. "Английский на неплохом уровне, но тяжко будет воспринимать англо-техническую речь" - на первом - а возможно и на всех последующих - этапах говорить на английском вам не придется, это точно. Воспринимать - ну разве что решите заниматься через запись на англоязычные обучающие курсы. Тут уж как захотите - в инете полно материалов - курсов, книг, блогов, форумов - и на русском, а в университете вряд-ли придется учится на английском. А вот чтение и понимание написанного английского - это таки обязательное условия вхождения в эту специальность. Иначе перспективы ваши в ней будут не интересней перспектив в рекрутинге.
9. "А с чего, собственно, начать? Есть ли какие-то рекомендации по книгам/курсам. " - вот этого - навалом, даже на этом форуме. Настолько навалом, что даже не хочется в 254 раз повторять одно и то-же. Так что ищите, найдете. Надеюсь, Гууглом пользоваться умеете. Или хотя-бы просто пройтись по "Похожим вопросам" внизу. Но вот пользуясь случаем хочу еще раз подчеркнуть - основное умение специалиста по Data Science - это умение и навыки самостоятельного поиска, анализа и инетрпретации информации. Благо источники ее сегодня доступны для любого, у кого есть доступ к интернет.
Удачи.
Ответ написан
Пригласить эксперта
Ответы на вопрос 1
Dit81
@Dit81
Security researcher, Android coder, SMM
Как ваши успехи в изучении Data Science? Сейчас начинаю посматривать в сторону Data Science после приглашения на вакансию. Начал с простых книг и введений в Data Science (типа книги "Теоретический минимум по Big Data. Всё что нужно знать о больших данных"), сейчас просто смотрю примеры реализаций различных алгоритмов и т.п. вещи. Благо уже книг и статей появляется просто очень много! Тема сейчас хайповая
Ответ написан
Ваш ответ на вопрос

Войдите, чтобы написать ответ

Войти через центр авторизации
Похожие вопросы